Wednesday, May 8, 2013

Một số dạng hàm 2 biến cơ bản

Linear: Y = b0 + (b1 * X)
Logarithmic: Y = b0 + (b1 * ln(X))
Inverse: Y = b0 + (b1 / X)
Quadratic: Y = b0 + (b1 * X) + (b2 * X^2)
Cubic: Y = b0 + (b1 * X) + (b2 * X^2) + (b3 * X^3)
Power: Y = b0 * (X^b1) OR ln(Y) = ln(b0) + (b1 * ln(X))
Compound: Y = b0 * (b1^X) OR ln(Y) = ln(b0) + (ln(b1) * X)
S-curve: Y = e^(b0 + (b1/X)) OR ln(Y) = b0 + (b1/X)
Logistic: Y = b0 / (1 + b1 * e^(-b2 * X))
Growth: Y = e^(b0 + (b1 * X)) OR ln(Y) = b0 + (b1 * X)
Exponential: Y = b0 * (e^(b1 * X)) OR ln(Y) = ln(b0) + (b1 * X)
Vapor Pressure: Y = e^(b0 + b1/X + b2 * ln(X))
Reciprocal Logarithmic: Y = 1 / (b0 + (b1 * ln(X)))
Modified Power: Y = b0 * b1^(X)
Shifted Power: Y = b0 * (X - b1)^b2
Geometric: Y = b0 * X^(b1 * X)
Modified Geometric: Y = b0 * X^(b1/X)
nth order Polynomial: Y = b0 + b1*X + b2*X^2 + b3*X^3 + b4*X^4 +
Hoerl: Y = b0 * (b1^X) * (X^b2)
Modified Hoerl: Y = b0 * b1^(1/X) * (X^b2)
Reciprocal: Y = 1 / (b0 + b1 * X)
Reciprocal Quadratic: Y = 1 / (b0 + b1 * X + b2 * X^2)
Bleasdale: Y = (b0 + b1 * X)^(-1 / b2)
Harris: Y = 1 / (b0 + b1 * X^b2)
Exponential Association: Y = b0 * (1 - e^(-b1 * X))
Three-Parameter Exponential Association: Y = b0 * (b1 - e^(-b2 *
Saturation-Growth Rate: Y = b0 * X/(b1 + X)
Gompertz Relation: Y = b0 * e^(-e^(b1 - b2 * X))
Richards: Y = b0 / (1 + e^(b1 - b2 * X))^(1/b3)
MMF: Y = (b0 * b1+b2 * X^b3)/(b1 + X^b3)
Weibull: Y = b0 - b1*e^(-b2 * X^b3)
Sinusoidal: Y = b0+b1 * b2 * cos(b2 * X + b3)
Gaussian: Y = b0 * e^((-(b1 - X)^2)/(2 * b2^2))
Heat Capacity: Y = b0 + b1 * X + b2/X^2
Rational: Y = (b0 + b1 * X)/(1 + b2 * X + b3 * X^2)

Mọi thứ đều có quy luật, điều quan trọng là ta có tìm được quy luật của nó hay không

No comments:

Post a Comment