Linear: Y = b0 + (b1 * X) |
Logarithmic: Y = b0 + (b1 * ln(X)) |
Inverse: Y = b0 + (b1 / X) |
Quadratic: Y = b0 + (b1 * X) + (b2 * X^2) |
Cubic: Y = b0 + (b1 * X) + (b2 * X^2) + (b3 * X^3) |
Power: Y = b0 * (X^b1) OR ln(Y) = ln(b0) + (b1 * ln(X)) |
Compound: Y = b0 * (b1^X) OR ln(Y) = ln(b0) + (ln(b1) * X) |
S-curve: Y = e^(b0 + (b1/X)) OR ln(Y) = b0 + (b1/X) |
Logistic: Y = b0 / (1 + b1 * e^(-b2 * X)) |
Growth: Y = e^(b0 + (b1 * X)) OR ln(Y) = b0 + (b1 * X) |
Exponential: Y = b0 * (e^(b1 * X)) OR ln(Y) = ln(b0) + (b1 * X) |
Vapor Pressure: Y = e^(b0 + b1/X + b2 * ln(X)) |
Reciprocal Logarithmic: Y = 1 / (b0 + (b1 * ln(X))) |
Modified Power: Y = b0 * b1^(X) |
Shifted Power: Y = b0 * (X - b1)^b2 |
Geometric: Y = b0 * X^(b1 * X) |
Modified Geometric: Y = b0 * X^(b1/X) |
nth order Polynomial: Y = b0 + b1*X + b2*X^2 + b3*X^3 + b4*X^4 + |
Hoerl: Y = b0 * (b1^X) * (X^b2) |
Modified Hoerl: Y = b0 * b1^(1/X) * (X^b2) |
Reciprocal: Y = 1 / (b0 + b1 * X) |
Reciprocal Quadratic: Y = 1 / (b0 + b1 * X + b2 * X^2) |
Bleasdale: Y = (b0 + b1 * X)^(-1 / b2) |
Harris: Y = 1 / (b0 + b1 * X^b2) |
Exponential Association: Y = b0 * (1 - e^(-b1 * X)) |
Three-Parameter Exponential Association: Y = b0 * (b1 - e^(-b2 * |
Saturation-Growth Rate: Y = b0 * X/(b1 + X) |
Gompertz Relation: Y = b0 * e^(-e^(b1 - b2 * X)) |
Richards: Y = b0 / (1 + e^(b1 - b2 * X))^(1/b3) |
MMF: Y = (b0 * b1+b2 * X^b3)/(b1 + X^b3) |
Weibull: Y = b0 - b1*e^(-b2 * X^b3) |
Sinusoidal: Y = b0+b1 * b2 * cos(b2 * X + b3) |
Gaussian: Y = b0 * e^((-(b1 - X)^2)/(2 * b2^2)) |
Heat Capacity: Y = b0 + b1 * X + b2/X^2 |
Rational: Y = (b0 + b1 * X)/(1 + b2 * X +
b3 * X^2) Mọi thứ đều có quy luật, điều quan trọng là ta có tìm được quy luật của nó hay không |
Wednesday, May 8, 2013
Một số dạng hàm 2 biến cơ bản
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment